On $\pi$-regular rings with no infinite trivial subring.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commuting $pi$-regular rings

R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

commuting $pi$-regular rings

r is called commuting regular ring (resp. semigroup) if for each x,y $in$ r thereexists a $in$ r such that xy = yxayx. in this paper, we introduce the concept of commuting$pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

On Involution Rings with Unique Minimal *-subring

The structure of certain involution rings having a unique minimal *-subring, is described.

متن کامل

K0 of Purely Infinite Simple Regular Rings

We extend the notion of a purely infinite simple C*-algebra to the context of unital rings, and we study its basic properties, specially those related to K-Theory. For instance, if R is a purely infinite simple ring, then K0(R) + = K0(R), the monoid of isomorphism classes of finitely generated projective R-modules is isomorphic to the monoid obtained from K0(R) by adjoining a new zero element, ...

متن کامل

Prime rings with PI rings of constants

It is shown that if the ring of constants of a restricted differential Lie algebra with a quasi-Frobenius inner part satisfies a polynomial identity (PI) then the original prime ring has a generalized polynomial identity (GPI). If additionally the ring of constants is semiprime then the original ring is PI. The case of a non-quasi-Frobenius inner part is also considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1988

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12234